POLYOXYGENATED ENT-KAURANES AND WATER-SOLUBLE CONJUGATES IN SEED OF PHASEOLUS COCCINEUS

PAUL GASKIN and JAKE MACMILLAN

School of Chemistry, The University, Bristol BS8 1TS, England

(Received 18 December 1974)

Key Word Index—*Phaseolus coccineus*; Leguminosae; *O*-isopropylidene derivatives: *ent*-6α,7α,16β,17-tetrahydroxykauranoic acid; water soluble conjugates; hydrolysis products; GC-MS identification.

Abstract—C- α and C- β , previously isolated from seed of *Phaseolus coccineus*, are shown respectively to be the *bis-O*-isopropylidene and the 16,17-mono-*O*-isopropylidene derivatives of *ent*-6 α ,7 α ,16 β ,17-tetrahydroxykauranoic acid. By GC–MS characterization of the products of acidic, basic and enzymatic hydrolysis, water soluble conjugates of the following compounds have been shown to occur in *P. coccineus* seed: GA₈, GA₁₇, GA₂₀, GA₂₈, *ent*-6 α ,7 α ,13-trihydroxykauranoic acid, *ent*-6 α ,7 α ,17-trihydroxy-16 β H-kauranoic acid, *ent*-6 α ,7 α ,16 β ,17-tetrahydroxykauranoic acid, 7 β ,13-dihydroxykaurenolide and abscisic acid.

Two compounds, $C-\alpha$ and $C-\beta$, of undetermined structure were isolated from immature seed of *Phaseolus coccineus* by Durley *et al.* [1]. Evidence is now presented showing that $C-\alpha$ and $C-\beta$ are respectively the 6,7,16,17-bis-O-isopropylidene and 16,17-mono-O-isopropylidene derivatives (1) and (3) of *ent*-6 α ,7 α ,16 β ,17-tetrahydroxykauranoic acid (4). Water soluble conjugates of the parent acid (4) and of other compounds have been detected in the BuOH-soluble extract from seed of *P. coccineus* by identification of their hydrolysis products.

The MS of the Me esters of $C-\alpha$ and $C-\beta$ and of the MeTMS of $C-\beta$ were published and discussed by Durley *et al.* [1]. From high resolution MS these authors concluded that the ion at m/e 447 was the M⁺ ion, $C_{25}H_{37}NO_6$. However, the accurate mass measured for the m/e 447 ion was also consistent with the composition $C_{26}H_{39}O_6$ of an M⁺-15 ion derived from an absent M⁺, $C_{27}H_{42}O_6$. On this basis, the MS of MeC- α contains ions at M⁺-58 (m/e 404), M⁺-15-58 (m/e 389), m/e 58 and m/e 43 indicative [2] of an O-isopropylidene derivative. Furthermore the MS of

MeC- α contained an ion at m/e 72, present [2] in the MS of the 1,2,4,5-bis-O-isopropylidene derivative of fructose and assigned [2] structure (7); this suggested that C-a contained a terminal Oisopropylidene function. This re-interpretation of the MS of MeC- α , together with the previously published [1] data indicated that $C-\alpha$ was the bisisopropylidene derivative of a tetrahydroxykauranoic acid. This possibility was further strengthened by GC-MS comparison with the bis-isopropylidene derivative (2), prepared from ent- 6α , 7α , 16α , 17-tetrahydroxykauranoic acid (5) by Murofushi et al. [3] and provided by them. Although the two compounds had different R_T s their MS were almost identical. C-\alpha was therefore hydrolysed with acid in the presence of (CH₂OH)₂ and the resulting tetrahydroxy-acid was characterized by GC-MS as the MeTMS of ent-6\alpha, 7\alpha, 16\beta, 17-tetrahydroxykauranoic acid (4) by direct comparison with an authentic [4] specimen. The MeTMS of the epimeric ent- 6α , 7α , 16α , 17-tetrahydroxykauranoic acid (5) isolated by Murofushi et al.[3] from seed of Calonyction aculeatum, had a similar MS but different GC retention time. $C-\alpha$ was regenerated from its hydrolysis product (4) on treatment with Me_2CO and TsOH.

Compound C- β was characterized by Durley et al. [1] as a dihydroxy-monocarboxylic acid C₂₃H₃₆O₆. The MS of the MeTMS derivative contains fragment ions at M^+ -15-58 (m/e 493), m/e 72, m/e 58 and m/e 43 characteristic of an Oisopropylidene derivative. The ion at m/e 147 indicated [5] the presence of a 1,2- or 1,3-diol in C- β and this was supported by the formation of an *n*-butyl boronate [6] from MeC- β which was characterized by GC-MS. Hydrolysis of C- β with acid in the presence of (CH2OH)2 gave ent- 6α , 7α , 16β , 17-tetrahydroxykauranoic acid (4), identified by GC-MS comparison of the MeTMS derivative with an authentic specimen [4]. From these facts it is concluded that $C-\beta$ is the 16,17mono-O-isopropylidene derivative (3) of ent- 6α , 7α , 16β , 17-tetrahydroxykauranoic acid (4). The alternative 6,7-mono-O-isopropylidene structure was excluded by the absence of strong ions at M^+ -103 and m/e 103, characteristic [4] of tertiary -CH₂OTMS groups, in the MS of the MeTMS

derivative and by the presence of an intense ion at m/e 269, characteristic [7,8] of 6,7-bis-O-TMS-kauranoic acid Me esters.

The isopropylidene derivatives (1) and (3) are almost certainly formed during column chromatography of the EtOAc-soluble acids from P. coccineus seed from the free tetrahydroxy-acid (4) and the acetone used to adsorb the fraction onto the column and to elute it. Since the EtOAc-soluble acidic fraction, obtained by Durley et al. [1] was no longer available a search for the free tetrahydroxy-acid (4) was made in the extant BuOHsoluble fraction, isolated by the same workers [1]. GC-MS of the MeTMS-derivatized fraction showed the presence of only traces of the free acid (4) together with traces of GA₈. However, hydrolysis of the BuOH-soluble fraction with acid, base or a crude pectinase preparation gave many products. Those identified as the Me and/or MeTMS derivatives by GC-MS comparison with authentic samples are shown in Table 1. The acid hydrolysis products of the 13-hydroxy GAs and 13-hydroxykaurenes were identified as derivatives of the ring C/D rearrangement products (15) and abscisic acid (ABA) as the lactone (16). The compounds detected in the hydrolysates from the BuOH-soluble fraction are presumably present as water-soluble conjugates. Apart from GA₈, GA₁₇ and GA20 which were identified as the free acids in the EtOAc fraction by Durley et al. [1] the compounds shown in Table 1 have not previously been detected in seed of P. coccineus. The tetrahydroxy-acid (4) and GA₈ (8) were the major products, present in much greater amounts after hydrolysis than before. Most of the conjugates are hydrolysed by base and may therefore be present as glycosidic esters [9]. GA₈ (8) is only released by enzymatic or acidic hydrolysis and is therefore probably present as the 2-O- β -glucoside previously detected in mature seed of P. coccineus by Schreiber et al. [10].

The enzymatic hydrolysis of the highly coloured, crude BuOH-soluble fraction gave a remarkably clean hydrolysate (see Fig. 1) and, in conjunction with base hydrolysis, provides a useful routine method of investigating water-soluble conjugates. The presence of ring C/D rearranged GA_8 and GA_{17} in the enzymatic hydrolysis is presumably due to their acid-catalysed formation during the isolation of the BuOH-soluble fraction.

$$R^{2}$$
 R^{3}
 R^{3}
 R^{4}
 R^{4}
 R^{5}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{2}
 R^{4}
 R^{5}
 R^{5

The presence of conjugates of $ent-6\alpha$, 7α , 13-trihydroxykaurenoic acid (9) and 7β , 13-dihydroxykaurenolide (14) shows that 13-hydroxylation of ent-kaurenes occurs in seed of P. coccineus and suggests that 13-hydroxylation may precede ring-contraction to GAs in this seed.

EXPERIMENTAL

For GC and GC-MS see Ref. 4. Me derivatives were prepared with CH₂N₂ and MeTMS derivatives were obtained

Table 1. Hydrolysis products from water-soluble constituents of seed of *P. coccineus*

Product			hydrolysis Enzymatic
GA ₁₇ (11)		√	· /
C/D rearranged GA ₁₇	✓	~	✓
GA ₂₈ (12)		✓.	
C/D rearranged GA ₂₈	\checkmark		
GA ₈ (8)	-		✓
C/D rearranged GA ₈	✓	-	✓
GA ₂₀ (13) C/D rearranged	✓		
Rearranged ABA (16)	✓		
(9)		✓	✓
C/D rearranged (9)	✓		✓
(4)		✓	✓
C/D rearranged (14)	✓		_
(10)		✓	√

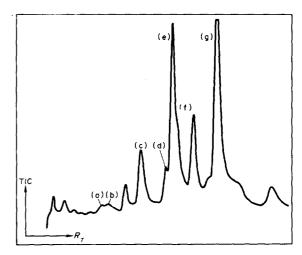


Fig. 1. GC-MS trace; MeTMS of enzyme hydrolysate of BuOH-soluble fraction; 2%-SE33, 205° programmed at 2°/min (a) GA₁₇ (11) Me ring C/D rearrangement product; (b) GA₁₇ (11) MeTMS; (c) MeTMS of compound (9); (d) GA₈ (8) MeTMS ring C/D rearrangement product; (e) GA₈ (8) McTMS; (f) McTMS of compound (10); and (g) MeTMS of tetraol (4).

by treating the Me derivatives with Sweeley's reagent [11] in a sealed tube with gentle warming when necessary.

Hydrolysis of C- α and C- β . MeC- α (ca 120 μg) or MeC- β (ca 120 μg) was treated with (CH₂OH)₂-H₂O (200 μl, 1:1) containing conc. H₂SO₄ (25 μl) for 24 hr at 18°. Dilution with H₂O (400 μl), extraction with EtOAc (3 × 1 ml) and evaporation of the dried extract gave a gum. In both cases this gummy product was derivatized and identified as the MeTMS derivative of ent-6 α ,7 α ,16 β ,17-tetrahydroxykauranoic acid (4) by GC-MS comparison with an authentic sample [4].

Hydrolysis of the BuOH-soluble fraction from seed of P. ooccineus. (a) Acidic. A portion (50 mg) of the BuOH-soluble fraction, obtained by Durley et al. [1], was heated at 100° for 3 hr with N HCl (1 ml). Extraction with EtOAc and recovery from the extract gave a gum which was analysed by GC-MS of the Me and MeTMS derivatives. The ring C/D rearrangement products of the following compounds were identified by direct comparison of MS with published spectra [8]: GA₁₇ (as Me ester). GA₂₀ (as Me ester), ent-6α,7α,13-trihydroxykaurenoic acid (9) (as the MeTMS derivative) and 7β ,13-dihydroxykaurenolide (14) (as the TMS derivative). Rearranged GA₈, GA₂₈ and ABA were identified by GC-MS comparison of the following derivatives with authentic samples prepared by treatment of GA₈, GA₂₈ or ABA with N HCl at 100° for 3 hr and derivatization of the product; rearranged GA₈ MeTMS, m/e 522 (M⁺, 100%), 217 (45), 147 (40), 129 (25), 75 (23) and 73 (100): rearranged MeGA₂₈, m/e 436 (M⁺, 21%), 404 (91), 376 (63), 358 (51), 348 (100), 344 (65), 326 (65), 316 (85), 199 (40), 194 (31) and 188 (51); and rearranged GA₂₈ MeTMS, m/e 508 (M⁺, 4%) 493 (9), 476 (4), 452 (30), 365 (32), 160 (25), 129 (100) and 73 (40); rearranged ABA lactone (16) m/e 246 (M⁺, 1%), 204 (1), 190 (100), 162 (5), 147 (4), 134 (19), 119 (4), 106 (5), 96 (6), and 91 (9).

(b) Alkaline. The BuOH-soluble fraction (50 mg) was heated at 100° for 1 hr with 2N KOH (1 ml). The soln acidified to pH 2·5 with cone HCl was extracted with EtOAc (3 × 1 ml). The gum recovered from the EtOAc was GC-MS'd as the

McTMS derivatives and identified by comparison with published MS. GA_{17} (11) [5], ent- 6α , 7α ,13-trihydroxykaurenoic acid (9) [8]. ent- 6α , 7α ,16 β ,17-tetrahydroxykauranoic acid (4) [4] and ent- 6α , 7α ,17-trihydroxy-16 β H-kauranoic acid (10). GA_{28} (12) was identified as the MeTMS derivative by directly GC-MS comparison with an authentic sample; m/e 580 (M $^+$, 30 $^\circ$), 565 (14), 548 (13), 520 (12), 519 (12), 471 (15), 208 (95), 207 (100), 129 (75) and 73 (46).

(c) Enzymatic. The BuOH fraction (269 μ g), "Boots Pectolytic Enzyme" (5.4 g) and KH₂PO₄ (0.68 g) in H₂O (100 ml) were incubated at 37° for 40 hr. The kieselguhr support was filtered off and the filtrate, after adjustment to pH 2 with cone HCl, was extracted with EtOAc (3 × 50 ml). The gum recovered from the EtOAc was derivatized and examined by GC-MS. The following compounds were identified from reference spectra: rearranged GA₁₇Me ester; GA₁₇ MeTMS; Me ent-6 α ,7 α ,13-trihydroxykaurenoate TMS; rearranged GA₈MeTMS; GA₈MeTMS; Me ent-6 α ,7 α ,17-trihydroxy-16 β H-kauranoate TMS; and ent-6 α ,7 α ,16 β ,17-tetrahydroxykauranoate TMS.

Acknowledgements—We thank the SRC for a Research Grant and Professor N. Takahashi for kindly providing samples.

REFERENCES

- Durley, R. C., MacMillan, J. and Pryce, R. J. (1971) Phytochemistry 10, 1891.
- De Jongh, D. C. and Biemann, K. (1964) J. Am. Chem. Soc. 86, 67.
- Murofushi, N., Yokota, T. and Takahashi, N. (1973) Tetrahedron Letters, 789.
- 4. Beeley, L. J., Gaskin, P. and MacMillan, J. (1975) Phytochemistry, 14, 779.
- 5. Binks, R., MacMillan, J. and Pryce, R. J. (1969) Phytochemistry 8, 271.
- Brooks, C. J. W. and Harvey, D. J. (1971) J. Chromatog. 54, 193.
- Graebe, J. E., Hedden, P., Gaskin, P. and MacMillan, J. (1974) Phytochemistry 13, 1433.
- 8. Bearder, J. R., MacMillan, J., Wels, C. M. and Phinney, B. O. (1975) *Phytochemistry*, to be published.
- 9. Hiraga, K., Yokota, T., Murofushi, N. and Takahashi, N. (1972) Agr. Biol. Chem. (Tokyo) 36, 345.
- Schreiber, K., Schneider, K., Sembdner, G. and Focke, I. (1966) Phytochemistry 5, 1221.
- Sweeley, C. C., Bentley, R., Makita, M. and Wells, M. M. (1963) J. Am. Chem. Soc. 85, 2497.